在△ABC中,若b2=ac,则cos(A-C)+cosB+cos2B的值是______.

1个回答

  • 解题思路:由正弦定理可知,sin2B=sinAsinC,利用三角形的内角和,两角和与差的三角函数化简cos(A-C)+cosB+cos2B,然后利用二倍角公式化简即可.

    ∵b2=ac,

    利用正弦定理可得sin2B=sinAsinC.

    ∴cos(A-C)+cosB+cos2B=cos(A-C)-cos(A+C)+cos2B

    =2sinAsinC+cos2B=2sin2B+(1-2sin2B)=1.

    故答案为:1.

    点评:

    本题考点: 正弦定理;两角和与差的余弦函数;二倍角的余弦.

    考点点评: 本题考查三角函数的化简和正弦定理的运用,解题时要注意公式的合理选用,考查计算能力,属于中档题.