由正弦定理,设a=ksinA,b=ksinB,c=ksinC(k>0),则b/(2a+c)=sinB/(2sinA+sinC),
cosB/cosC=-sinB/(2sinA+sinC),
2cosBsinA+cosBsinC+sinBcosC=0,
2cosBsinA+sin(B+C)=0,
2cosBsinA+sinA=0,
sinA(2cosB+1)=0,sinA>0,
2cosB+1=0,
cosB=-1/2,B=2π/3
由正弦定理,设a=ksinA,b=ksinB,c=ksinC(k>0),则b/(2a+c)=sinB/(2sinA+sinC),
cosB/cosC=-sinB/(2sinA+sinC),
2cosBsinA+cosBsinC+sinBcosC=0,
2cosBsinA+sin(B+C)=0,
2cosBsinA+sinA=0,
sinA(2cosB+1)=0,sinA>0,
2cosB+1=0,
cosB=-1/2,B=2π/3