log8(9)=a,log2(5)=b,用a,b表示lg3

3个回答

  • 先介绍换底公式:log(a)b=lgb/lga

    证明:设log(a)b=t

    则a^t=b,两边取以10为底的对数

    lga^t=lgb

    tlga=lgb

    所以t=lgb/lga

    所以log(a)b=lgb/lga

    ===========

    log(8)9=a ==> lg9/lg8=a ==> 2lg3/(3lg2)=a ==> lg3=(3a/2)lg2

    log(2)5=b ==> lg5/lg2=b ==> (lg10-lg2)/lg2=b ==> lg2=1/(b+1)

    由此可得,lg3=3a/[2(b+1)]