若x^2-5x-1999=0,求[(x-2)^4+(x-1)^2-2]/[(x-1)(x-2)]

2个回答

  • [(x-2)^4+(x-1)^2-1]/[(x-1)(x-2)]=[(x^2-4x+4)^2+(x-1)^2-1]/(x^2-3x+2)

    =[(x^2-5x-1999+x+2003)^2+(x-1)^2-1]/(x^2-3x+2)

    =[(x+2003)^2+(x-1)^2-1]/(x^2-3x+2)

    =[x^2+4006x+2003^2+x^2-2x]/(x^2-3x+2)

    =[2x^2+4004x+2003^2]/(x^2-3x+2)

    =[2(x^2-5x-1999)+4014x+2003^2+2*1999]/(x^2-3x+2)

    =[4014x+2003^2+2*1999]/(x^2-5x-1999+2x+2001)

    =[4014x+4016007]/(2x+2001)

    =2007[2x+2001]/(2x+2001)

    =2007