n=1,a1=1,成立
n=2,a2=s2-a1=5,成立
设n=k-1,n=k,成立
ak=(3k-1)*2^(k-2)
a(k-1)=(3k-4)*2^(k-3)
则a(k+1)=S(n+1)-S(n)
=4an+2-(4a(n-1)+2)
=4(an-a(n-1))
=4*[(3k-1)*2^(k-2)-(3k-4)*2^(k-3)]
=4*(3k+2)*2^(k-3)
=[3(k+1)-1]2[(k+1)-2]
也成立
原命题得证
n=1,a1=1,成立
n=2,a2=s2-a1=5,成立
设n=k-1,n=k,成立
ak=(3k-1)*2^(k-2)
a(k-1)=(3k-4)*2^(k-3)
则a(k+1)=S(n+1)-S(n)
=4an+2-(4a(n-1)+2)
=4(an-a(n-1))
=4*[(3k-1)*2^(k-2)-(3k-4)*2^(k-3)]
=4*(3k+2)*2^(k-3)
=[3(k+1)-1]2[(k+1)-2]
也成立
原命题得证