f (x)=√3(cosωx)平方+sinωxcosωx+a
=√3(1+cos2ωx)/2+(sin2ωx)/2+a
=sin(2ωx+π/3)+a+√3/2
(1) 2ω*π/6 +π/3=π/2
所以 ω=1/2
(2) f(x)=sin(x+π/3)+a+√3/2
x+π/3∈[0,7π/6]
所以 x+π/3=7π/6
时,y有最小值 -1/2+a+√3/2=√3
a=1/2+√3/2
f (x)=√3(cosωx)平方+sinωxcosωx+a
=√3(1+cos2ωx)/2+(sin2ωx)/2+a
=sin(2ωx+π/3)+a+√3/2
(1) 2ω*π/6 +π/3=π/2
所以 ω=1/2
(2) f(x)=sin(x+π/3)+a+√3/2
x+π/3∈[0,7π/6]
所以 x+π/3=7π/6
时,y有最小值 -1/2+a+√3/2=√3
a=1/2+√3/2