证明设CD与AB相交于点H
如图,∵∠DAC=60°+∠BAC,∠BAE=60°+∠BAC
∴∠DAC=∠BAE
∵AC=AE,AD=AB
∴△ACD≌△AEB
∴∠ADF=∠ACF
∵∠AHD=∠BHF
∴△ADH∽△FBH
∴AH∶HF=DH∶BH
∵∠AHF=∠DHB
∴△AFH∽△DBH
∴∠AFD=∠ABD=60°
同理可得∠AFE=60°
∠AFD=∠AFE
证明设CD与AB相交于点H
如图,∵∠DAC=60°+∠BAC,∠BAE=60°+∠BAC
∴∠DAC=∠BAE
∵AC=AE,AD=AB
∴△ACD≌△AEB
∴∠ADF=∠ACF
∵∠AHD=∠BHF
∴△ADH∽△FBH
∴AH∶HF=DH∶BH
∵∠AHF=∠DHB
∴△AFH∽△DBH
∴∠AFD=∠ABD=60°
同理可得∠AFE=60°
∠AFD=∠AFE