已知ABC均在椭圆M:x^2/a^2+y^2=1(a>1)上,直线AB,AC分别是椭圆的左右焦点F1,F2,当向量

1个回答

  • ①当向量AC·向量F1F2=0时,AF2垂直于F1F2,

    9向量AF1·向量AF2

    =9|AF1||AF2|cosA=9|AF2|^2=|AF1|^2

    =>|AF1|=3|AF2| 又|AF1|+|AF2|=2a

    =>|AF1|=3a/2,|AF2|=a/2,2c=|F1F2|=(√2)a

    =>a^2=2(a^2-2)=>a^2=4

    椭圆M的方程为x^2/4+y^2/2=1

    ②设P,E,F的坐标依次为(2cosα,(√2)sinα),(cosβ,2+sinβ),(-cosβ,2-sinβ)

    则向量PE·向量PF

    =(cosβ-2cosα)(-cosβ-2cosα)+

    (2+sinβ-(√2)sinα)(2-sinβ-(√2)sinα)

    =4(cosα)^2-4(√2)sinα+2(sinα)^2+3

    =-2(sinα)^2-4(√2)sinα+7

    =11-2(sinα+√2)^2

    当sinα=-1时,向量PE·向量PF取最大值5+4√2