(2013•下关区一模)如图,直线AB∥CD,AB=AC=5厘米,点D在点C右侧,CD=4厘米.

1个回答

  • 解题思路:(1)由直线AB∥CD,易得当CD≠AB时,四边形ACDB是梯形;当CD=AB时,四边形ACDB是平行四边形,又由AB=AC=5厘米,可得四边形ACDB可能是菱形;(2)当点D向右运动1厘米时,CD=5厘米,由AB=AC=5厘米,可得CD=AB,继而可证得四边形ACDB是菱形.

    (1)是:菱形或梯形;

    理由:∵直线AB∥CD,

    ∴当CD≠AB时,四边形ACDB是梯形;

    当CD=AB时,四边形ACDB是平行四边形,

    ∵AB=AC,

    ∴▱ACDB是菱形;

    ∴四边形ACDB可能是菱形或梯形;

    故答案为:菱形或梯形;

    (2)当点D向右运动1厘米时,四边形ACDB是菱形.

    证明:∵CD=4厘米,

    ∴当点D向右运动1厘米时,CD=5厘米,

    ∵AB=AC=5厘米,

    ∴AB=CD,

    ∵AB∥CD,

    ∴四边形ACDB是平行四边形,

    ∴▱ACDB是菱形.

    点评:

    本题考点: 菱形的判定;平行四边形的判定;等腰梯形的判定.

    考点点评: 此题考查了菱形的判定、梯形的判定与平行四边形的判定与性质.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.