I是△ABC的内心,过I作DE⊥AI,分别交AB,AC于点D,E,连接BI,CI,求证

1个回答

  • 证明:(1)∵DE⊥AI

    ∴∠CAI+∠AEI=90°

    ∵∠AEI=∠ICE+∠EIC

    ∴∠CAI+∠ICE+∠EIC=90°

    ∵I是△ABC的内心

    ∴∠CAI=1/2∠CAB ∠ICE=1/2∠BCA ∠IBC=1/2∠ABC

    ∵∠CAB+∠BCA+∠ABC=180°

    ∴1/2∠CAB+1/2∠BCA+1/2∠ABC=90°

    ∴∠CAI+∠ICE+∠IBC=90°

    ∴∠EIC=∠IBC

    同理∠DIB=∠ICB

    ∵∠EIC=∠IBC ∠ECI=∠ICB

    ∴⊿ECI∽⊿ICB

    ∴IC/CE=BC/CI

    ∴CI²=CE*BC

    (2)∵∠EIC=∠IBC ∠DIB=∠ICB

    ∵∠IBC=∠IBD ∠ICB=∠ICE

    ∴∠EIC=∠DBI ∠DIB=⊿ECI

    ∴⊿DIB∽⊿ECI

    ∴DI/DB=EC/EI

    ∴DI*EI=EC*BD

    ∵∠IAD=∠IAE ∠AID=∠AIE=90°AI=AI

    ∴⊿AID≌⊿AIE

    ∴DI=EI

    ∴EI²=EC*BD