∵由余弦定理,得a 2=b 2+c 2-2bccosA,b 2=a 2+c 2-2accosB,c 2=a 2+b 2-2abcosC,
∴将三个式子相加,可得a 2+b 2+c 2=2(a 2+b 2+c 2)-2(abcosC+bccosA+cacosB),
整理得:abcosC+bccosA+cacosB=
1
2 (a 2+b 2+c 2),
∵a=5,b=6,c=7,
∴abcosC+bccosA+cacosB=
1
2 (5 2+6 2+7 2)=55.
故答案为:55
∵由余弦定理,得a 2=b 2+c 2-2bccosA,b 2=a 2+c 2-2accosB,c 2=a 2+b 2-2abcosC,
∴将三个式子相加,可得a 2+b 2+c 2=2(a 2+b 2+c 2)-2(abcosC+bccosA+cacosB),
整理得:abcosC+bccosA+cacosB=
1
2 (a 2+b 2+c 2),
∵a=5,b=6,c=7,
∴abcosC+bccosA+cacosB=
1
2 (5 2+6 2+7 2)=55.
故答案为:55