过点A作AM⊥BE于M,AN⊥CD于N
∵∠BAD=60,AB=AD
∴等边△ABD
∴∠ABD=∠ADB=60
∵∠BAE=∠BAC+∠CAE,∠DAC=∠BAC+∠BAD,∠BAD=∠CAE
∴∠BAE=∠DAC
∵AC=AE
∴△BAE≌△DAC (SAS)
∴∠ABE=∠ADC,BE=CD,S△BAE=S△DAC
∠DFE=∠FBD+∠FDB
=∠ABD+∠ABE+∠FDB
=∠ABD+∠ADC+∠FDB
=∠ABD+∠ADB=120
∵AM⊥BE,AN⊥CD
∴S△BAE=BE×AM/2,S△DAC=CD×AN/2
∴AM=AN
∴AF平分∠DFE
∴∠AFE=∠DFE/2=60°