y=sect
dy=sect tant dt
dy/√(y^2-1)=sect dt
=∫sect dt
=ln|sect+tant|
=ln|y+√(y^2-1)|
x+C=ln|y+√(y^2-1)|
y(1)=e:C=-1
e^(x-1)=y+√(y^2-1)
有理化
y-√(y^2-1)=e^(1-x)
两个一加除2即得答案
y=sect
dy=sect tant dt
dy/√(y^2-1)=sect dt
=∫sect dt
=ln|sect+tant|
=ln|y+√(y^2-1)|
x+C=ln|y+√(y^2-1)|
y(1)=e:C=-1
e^(x-1)=y+√(y^2-1)
有理化
y-√(y^2-1)=e^(1-x)
两个一加除2即得答案