AC+CE的长:√(x^2+1)+√[(8-x)^2+25]
2)当A、C、E三点共线时,AC+CE的值最小,所以连接AE,交BD于C'可证三角形ABC'与三角形EDC'全等,则AB:BC'=DE:DC' 所以,
5:(8-x)=1:x x=4/3
所以当CD长为三分之四时,AC+CE的值最小
3)图不变,数字变化,根据式子√(x^2+4)+√[(12-x)^2+9]可设,AB=3,DE=2,BD=12,CD=x.
同理,当A、C、E三点共线时,AC+CE的值最小,也就是√(x^2+4)+√[(12-x)^2+9]的最小值.
按照第二问算法,当x=24/5时,AC+CE的值最小,也就是√(x^2+4)+√[(12-x)^2+9]的最小值.