(1)y=(2x^2+bx+c)/(x^2+1)
(y-2)x^2-bx+y-c=0
Δ=b^2-4(y-2)(y-c)
y=3、y=1时分别代入得
b=-2 c=2
(2)f(-1)=3 f(1)=1 判断单调递减
证明:y=(2x^2+2-2x)/(x^2+1)=2-2x/(x^2+1)=2-2/(x+1/x)
由于g(x)=x+1/x 在[-1,0)和(0,1]上单调递减 故y=2-2/(x+1/x)在[-1,1]上是减函数
(3)①t1/6 f[|t-1/6|-|t+1/6|]=f(-1/3)=2.6