若x+y+z=0且x,y,z互不相等.求x^2/(2x^2+yz)+y^2/(2y^+xz)+z^2/(2z^2+xy)
1个回答
假设a=0 b=1 c=-1
则:
x^2/(2x^2+yz)+y^2/(2y^+xz)+z^2/(2z^2+xy)
=0/(0-1)+1/(2-0)+(-1)/(2+0)
=0+1/2-1/2
=0
相关问题
化简 2x-y-z x 2 -xy-xz+yz + 2y-x-z y 2 -xy-yz+xz + 2z-x-y z 2
化简(2x-y-z/x^2-xy-xz+yz)+(2y-x-z/y^2-xy-yz+xz)+(2x-x-y/z^2-xz
求(2X+Z-Y)/(X^2-XY+XZ-YZ)-(2X+Y+Z)/(X^2+XY+XZ+YZ)
若x,y,z>0 则根号(x^2+y^2+xy)+根号(y^2+z^2=yz)>根号(x^2+z^2+xz)
2yz/x+2xz/y+2xy/z≥2x+2y+2z
已知x2-yz=y2-xz=z2-xy,求证:x=y=z或x+y+z=0.
x/2=y/3=z/4,求(xy+yz+xz)/(x^2+y^2+z^2)
x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2 =[x(y+z)-y(x-z)]^2 =(xz+
若x/2=y/3=z/4,则xy+yz+xz/x^2+y^2+z^2=
已知x2+y2+z2-xy-yz-xz=0,求证x=y=z