满足arcsinx+arctan(1/7)=派/4的x值等于

1个回答

  • 设arctan(1/7)=a,则arcsinx=派/4-a

    有:tana=1/7,sin(派/4-a)=(根号2)/2*(cosa-sina)=x

    根据 arc函数定义,a为锐角,

    tana=sina/cosa=[根号(1-cosa的平方)]/cosa=1/7

    cosa=(-1+根号9605)/98,则sina=根号(2根号9605-2)/98

    x=(根号2)/2*{(-1+根号9605)/98-根号(2根号9605-2)/98}