解题思路:先设CE=x,再根据图形翻折变换的性质得出AE=BE=8-x,再根据勾股定理求出x的值,进而可得出△CBE的面积.
设CE=x,则AE=8-x,
∵△BDE是△ADE翻折而成,
∴AE=BE=8-x,
在Rt△BCE中,BE2=BC2+CE2,即(8-x)2=62+x2,
解得:x=[7/4],
∴S△CBE=[1/2]CE×BC=[21/4].
故选A.
点评:
本题考点: 翻折变换(折叠问题).
考点点评: 本题考查的是图形翻折变换的性质及勾股定理,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”的知识是解答此题的关键.