设sqrt(x^2+1)=t,sqrt(y^2+16)=p,两边平方:x^2=t^2-1,y^2=p^2-16,
x+y=12,两边平方,x^2+2xy+y^2=144,x^2+y^2>=72,代入:t^2+p^2>=89;
令t+p=z,在直角坐标中,分别以t,p为轴,z为直线的截距,t^2+p^2=89为圆,当直线相切于圆时,值最小,由点到直线的距离公式可求得:sqrt(178)(根号178)
设sqrt(x^2+1)=t,sqrt(y^2+16)=p,两边平方:x^2=t^2-1,y^2=p^2-16,
x+y=12,两边平方,x^2+2xy+y^2=144,x^2+y^2>=72,代入:t^2+p^2>=89;
令t+p=z,在直角坐标中,分别以t,p为轴,z为直线的截距,t^2+p^2=89为圆,当直线相切于圆时,值最小,由点到直线的距离公式可求得:sqrt(178)(根号178)