(1)∵△ABC是等边三角形,且D是BC中点,
∴DA平分∠BAC,即∠DAB=∠DAC=30°;
∵△DAE是等边三角形,
∴∠DAE=60°;
∴∠CAE=∠DAE-∠CAD=30°;
(2)证明:∵△BAC是等边三角形,F是AB中点,
∴CF⊥AB;
∴∠BFC=90°
由(1)知:∠CAE=30°,∠BAC=60°;
∴∠FAE=90°;
∴AE ∥ CF;
∵△BAC是等边三角形,且AD、CF分别是BC、AB边的中线,
∴AD=CF;
又AD=AE,∴CF=AE;
∴四边形AFCE是平行四边形;
∵∠AFC=∠FAE=90°,
∴四边形AFCE是矩形.