已知数列﹛an﹜的前n项和为Sn=3^n,数列﹛bn﹜满足b1=-1,bn+1=bn+(2n-1).已经得出n=1时,a

2个回答

  • 由题知:b(n+1)=bn+(2n-1)

    则:

    b2=b1+(2*1-1)

    b3=b2+(2*2-1)

    b4=b3+(2*3-1)

    .

    bn=b(n-1)+[2*(n-1)-1]

    累加法,得:bn=b1+(2*1-1)+(2*2-1)+(2*3-1)+.+[2*(n-1)-1]

    =b1+2*[1+2+3+.+(n-1)]-(n-1)

    =-1+n*(n-1)-(n-1)

    =n²-2n

    即:bn=n²-2n

    又因为:当n>1时,an=2*[3^(n-1)]

    且:cn=an*bn/n

    则:当n=1时,cn=c1=a1*b1/1=-3

    当n>1时,cn=(2n-4)*[3^(n-1)]

    所以:Tn=-3+(2*2-4)*(3^1)+(2*3-4)*(3^2)+(2*4-4)*(3^3)+.+(2n-4)*[3^(n-1)] ①

    则:

    3Tn=-9+(2*2-4)*(3^2)+(2*3-4)*(3^3)+(2*4-4)*(3^4)+.+[2(n-1)-4]*[3^(n-1)]+(2n-4)*(3^n) ②

    ①-②得:-2Tn=6+2*(3^2)+2*(3^3)+2*(3^4)+.+2*[3^(n-1)]-(2n-4)*(3^n)

    =6+2*[3^2+3^3+3^4+.+3^(n-1)]-(2n-4)*(3^n)

    =6+2*{9*[3^(n-2)]/2}-(2n-4)*(3^n)

    =6+9*[3^(n-2)]-(2n-4)*(3^n)

    =6+(3^n)-9-(2n-4)*(3^n)

    =(5-2n)*(3^n)-3

    即:-2Tn=(5-2n)*(3^n)-3

    所以:Tn=[(2n-5)*(3^n)+3]/2