解题思路:将原式括号中两项的分母分别分解因式,找出最简公分母,通分并利用同分母分式的减法法则计算,除式的分子利用十字相乘法分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后即可得到结果.
原式=[[a+1
a(a−1)-
4
(a+1)(a−1)]÷
(a+3)(a−1)/a+3]
=[
(a+1)2
a(a+1)(a−1)-[4a
a(a+1)(a−1)]÷
(a+3)(a−1)/a+3]
=
(a−1)2
a(a+1)(a−1)•
a+3
(a+3)(a−1)
=
1
a(a+1)
=
1
a2+a.
点评:
本题考点: 分式的混合运算.
考点点评: 此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应将多项式分解因式后再约分.