dy/dx=(x-y+4)/(x+4y-1)求通解

1个回答

  • 令y=n+1,x=m-3,则dy=dn,dx=dm

    代入原方程,得dn/dm=(m-n)/(m+4n).(1)

    令t=n/m,则dn/dm=mdt/dm+t

    代入方程(1),得 mdt/dm=(1-4t^2)/(1+4t)

    ==> dm/m=(1+4t)dt/(1-4t^2)

    ==> 2dm/m=[3/(1-2t)-1/(1+2t)]dt

    ==> 4ln│m│=-3ln│1-2t│-ln│1+2t│+ln│C│ (C是积分常数)

    ==> m^4=C/[(1+2t)(1-2t)^3]

    ==> m^4(1+2t)(1-2t)^3=C

    ==> m^4(1+2n/m)(1-2n/m)^3=C

    ==> (m-2n)(m+2n)^3=C

    ==> (x-2y+5)(x+2y+1)^3=C

    故 原方程的通解是(x-2y+5)(x+2y+1)^3=C.