数学题求半立方抛物线y^2=2/3(x-1)^3被抛物线y^2=x/3截得的一段弧长

1个回答

  • 联立y^2=2/3(x-1)^3和y^2=x/3得

    2(x-1)^3=x

    令x-1=t,得2t^3=t+1

    2t^3-t-1=0

    2t^3-2t+t-1=0

    2t(t^2-1)+(t-1)=0

    2t(t+1)(t-1)+(t-1)=0

    (t-1)[2t(t+1)+1]=0

    (t-1)(2t^2+2t+1)=0

    得t=1(2t^2+2t+1=0无解)

    故x=t+1=1+1=2,y=±√(2/3)=±√6/3

    半立方抛物线y^2=2/3(x-1)^3,两边对x求导得

    2y*dy/dx=2/3*3(x-1)^2=2(x-1)^2

    y'=dy/dx=(x-1)^2/y

    于是√(1+y'^2)=√[1+(x-1)^4/y^2]=√{1+(x-1)^4/[2/3*(x-1)^3}=√[(3x-1)/2]

    则该段圆弧长度L=2∫(x:0,2)√(1+y'^2)dx

    =2∫(x:1,2) √[(3x-1)/2]dx

    =2*√(3/2)*∫(x:1,2) √(x-1/3)dx

    =√6*2/3*(x-1/3)^(3/2)|(x;1,2)

    =2(5√10-4)/9