令t=x+1,则x=t-1,dx=dt
∫(3x+5)dx/(x^2+2x+2)^2
=∫(3t+2)dt/(t^2+1)^2 分部积分法
=-∫(3t+2)/2t d[1/(t^2+1)]
=-3/2∫d[1/(t^2+1)]-∫1/t d[1/(t^2+1)]
=-3/2(t^2+1)-1/t×1/(t^2+1)-∫1/t^2×1/(t^2+1)dt
=-3/2(t^2+1)-1/t×1/(t^2+1)-∫[1/t^2-1/(t^2+1)]dt
=-3/2(t^2+1)-1/t×1/(t^2+1)+1/t+arctant+C
=(2t-3)/[2(t^2+1)]+arctant+C
=(2t-1)/2(x^2+x+2)+arctan(x+1)+C