令θ=7π,则有tan3θ+tan4θ=0,
即tanθ+3tan2θ-3tanθtan²2θ-tan³4θ=0,
令tanθ=x,则x^6-21x^4+35x^2-7=0.
∵tan(kπ/7) (k=1,2,3)满足上式,
∴tan²(π/7)、tan²(2π/7)、tan²(3π/7)是
y³-21y²+35y-7=0的根.
依韦达定理知
∴tan²(π/7)tan²(2π/7)tan²(3π/7)=7
→tan(π/7)tan(2π/7)tan(3π/7)=√7.
从而,tan(π/7)+tan(2π/7)+tan(4π/7)
=tan(π/7)+tan(2π/7)-tan(3π/7)
=tan(3π/7)[1-tan(π/7)tan(2π/7)]-tan(3π/7)
=-tan(π/7)tan(2π/7)tan(3π/7)
=-√7.