m/n=3/5 则n/m=5/3
m/(m+n)+m/(m-n)-[n^2/(m^2-n^2)]
=[m(m-n)+m(m+n)-n^2]/(m^2-n^2)
=(2m^2-n^2)/(m^2-n^2)
=1+m^2/(m^2-n^2)
=1+1/[1-(n/m)^2]
=1+1/(1-25/9)
=1+9/16
=25/16
m/n=3/5 则n/m=5/3
m/(m+n)+m/(m-n)-[n^2/(m^2-n^2)]
=[m(m-n)+m(m+n)-n^2]/(m^2-n^2)
=(2m^2-n^2)/(m^2-n^2)
=1+m^2/(m^2-n^2)
=1+1/[1-(n/m)^2]
=1+1/(1-25/9)
=1+9/16
=25/16