因为是x^2/a^2+y^2/b^2=1且过(2,0)点所以a=2
e=√3/2所以c=√3所以b=1
所以方程为x^2/4+y^2=1
设A(x1,y1) B(x2,y2)
x^2/4+y^2=1
y=x+m 联立 得
x^2/4+x^2+2mx+m^2-1=0
5x^2+8mx+4(m^2-1)=0
△OAB直角三角形
1.OA⊥OB
则x1x2+y1y2=0
x1x2=4(m^2-1)/5
y1y2=x1x2+m(x1+x2)+m^2
x1x2+y1y2=8(m^2-1)/5-m(8m)/5+m^2=0
-8/5+m^2=0
m=±2√10/5
2.AB⊥OA
kAB=1 kOA=-1
直线OA经过原点 方程为 y=-x
y=-x
x^2/4+y^2=1
x^2/4+x^2=1
5x^2=4 x=±2√5/5
x=2√5/5 y=-2√5/5 m=-4√5/5
x=-2√5/5 y=2√5/5 m=4√5/5