实数x>0,y小于等于1
xy+2x+y-2=0
(x+1)*y=2-2x
y=2(1-x)/(x+1)
因y≤1
得 2(1-x)/(x+1)≤1
(2-2x-x-1)/(x+1)≤0
(3x-1)/(x+1)≥0
又知x>0 x+1>0
所以3x-1≥0
x的取值范围x≥1/3
z=2x+y=2x+2(1-x)/(x+1)=2x-2+4/(x+1)
=2(x+1)+4/(x+1)-4
≥2√[2(x+1)*4/(x+1)]-4
=4√2-4
可见你的答案正确
实数x>0,y小于等于1
xy+2x+y-2=0
(x+1)*y=2-2x
y=2(1-x)/(x+1)
因y≤1
得 2(1-x)/(x+1)≤1
(2-2x-x-1)/(x+1)≤0
(3x-1)/(x+1)≥0
又知x>0 x+1>0
所以3x-1≥0
x的取值范围x≥1/3
z=2x+y=2x+2(1-x)/(x+1)=2x-2+4/(x+1)
=2(x+1)+4/(x+1)-4
≥2√[2(x+1)*4/(x+1)]-4
=4√2-4
可见你的答案正确