f(x+2)=[1+f(x)]/[1-f(x)]
1+f(x+2)=1+[1+f(x)]/[1-f(x)]=2/[1-f(x)]
1-f(x+2)=1-[1+f(x)]/[1-f(x)]=-2f(x)/[1-f(x)]
所以f(x+4)=[1+f(x+2)]/[1-f(x+2)]
={2/[1-f(x)]}/{-2f(x)/[1-f(x)]}
=-1/f(x)
所以,f(x+8)=-1/f(x+4)=f(x)
即f(x) 是周期函数,周期是8
f(x+2)=[1+f(x)]/[1-f(x)]
1+f(x+2)=1+[1+f(x)]/[1-f(x)]=2/[1-f(x)]
1-f(x+2)=1-[1+f(x)]/[1-f(x)]=-2f(x)/[1-f(x)]
所以f(x+4)=[1+f(x+2)]/[1-f(x+2)]
={2/[1-f(x)]}/{-2f(x)/[1-f(x)]}
=-1/f(x)
所以,f(x+8)=-1/f(x+4)=f(x)
即f(x) 是周期函数,周期是8