为表述方便,记不定积分符号为J
则J(xe^x)/(x+1)^2dx=J (xe^x)/(x+1)^2d(x+1)
= -J (xe^x)d(1/(x+1))
分步积分=-(xe^x)/(x+1)+J 1/(x+1)d(xe^x)
== -(xe^x)/(x+1)+J 1/(x+1)e^x(x+1)dx
=-(xe^x)/(x+1)+J e^xdx
=-(xe^x)/(x+1)+e^x+C
C为常数
为表述方便,记不定积分符号为J
则J(xe^x)/(x+1)^2dx=J (xe^x)/(x+1)^2d(x+1)
= -J (xe^x)d(1/(x+1))
分步积分=-(xe^x)/(x+1)+J 1/(x+1)d(xe^x)
== -(xe^x)/(x+1)+J 1/(x+1)e^x(x+1)dx
=-(xe^x)/(x+1)+J e^xdx
=-(xe^x)/(x+1)+e^x+C
C为常数