(2013•梅州一模)已知函数f(x)=(a−12)x2+lnx(a∈R).

1个回答

  • 解题思路:(I)将a的值代入f(x),求出f(x)的导函数;,将∃x0∈[1,e]使不等式f(x0)≤m转化为f(x)的最小值小于等于m,利用[1,e]上的函数递增,求出f(x)的最小值,令最小值小于等于m即可.

    (II)将图象的位置关系转化为不等式恒成立;通过构造函数,对新函数求导,对导函数的根与区间的关系进行讨论,求出新函数的最值,求出a的范围.

    (I)当a=1时,f(x)=12x2+lnx(x>0),f′(x)=x+1x可知当x∈[1,e]时f(x)为增函数,最小值为f(1)=12,要使∃x0∈[1,e]使不等式f(x0)≤m,即f(x)的最小值小于等于m,故实数m的取值范围是[12,+∞)(2)已知...

    点评:

    本题考点: 利用导数求闭区间上函数的最值;函数恒成立问题;利用导数研究函数的单调性.

    考点点评: 解决不等式恒成立及不等式有解问题一般都转化为函数的最值问题,通过导数求函数的最值,进一步求出参数的范围.