(1)证明:连接AC,
∵AB是⊙O的直径
∴∠ACB=90°
又∵OD⊥BC
∴AC∥OE
∴∠CAB=∠EOB
由 AC^对的圆周角相等
∴∠AEC=∠ABC
又∵∠AEC=∠ODB
∴∠ODB=∠OBC
∴△DBF∽△OBD
∴∠OBD=90°
即BD⊥AB
又∵AB是直径
∴BD是⊙O的切线.
(2)∵OD⊥弦BC于点F,且点O为原点
∴BF=FC
∴BF=4
由题意OB是半径即为5
∴在直角三角形OBF中OF为3
由以上(1)得到△OBF∽△OBD
∴ BD/BF=OB/OF
即得BD= 20/3.
(3)
连结BE
∵AB为直径
∴∠AEB=90°
∵OD⊥BC
∴△BFE∽△EFG
∵BF=4
FE=5-3=2
∴GF=1