∵等差数列{a n}中,a 2=4,a 6=12;
∴公差d=
a 6 - a 2
6-2 =
12-4
6-2 =2 ;
∴a n=a 2+(n-2)×2=2n;
∴
a n
2 n+1 =
n
2 n ;
∴
a n
2 n+1 的前n项和,
S n =1×
1
2 +2× (
1
2 ) 2 +3× (
1
2 ) 3 +… +(n-1)× (
1
2 ) n-1 +n× (
1
2 ) n
1
2 S n = 1× (
1
2 ) 2 +2× (
1
2 ) 3 +3× (
1
2 ) 4 …+(n-1)× (
1
2 ) n +n× (
1
2 ) n+1
两式相减得
1
2 S n =
1
2 + (
1
2 ) 2 + (
1
2 ) 3 +…+ (
1
2 ) n -n (
1
2 ) n+1
=
1
2 - (
1
2 ) n+1
1-
1
2 - n (
1
2 ) n+1
∴ S n =1+
n+1
2 n
故选B