这应该是一个选择题吧……
m[f(x)]²+nf(x)+p=0
设解得f(x)=s,或f(x)=t
而f(x)=ax²+bx+c
所以就有ax²+bx+c-s=0,或ax²+bx+c-t=0
设方程的4个解分别为x1、x2、x3、x4
那么x1+x2=-b/a,x3+x4=-b/a
所以x1+x2=x3+x4
即方程的4个解必然满足x1+x2=x3+x4
而{1、4、16、64}不满足x1+x2=x3+x4
所以{1、4、16、64}不可能是方程的解集
这应该是一个选择题吧……
m[f(x)]²+nf(x)+p=0
设解得f(x)=s,或f(x)=t
而f(x)=ax²+bx+c
所以就有ax²+bx+c-s=0,或ax²+bx+c-t=0
设方程的4个解分别为x1、x2、x3、x4
那么x1+x2=-b/a,x3+x4=-b/a
所以x1+x2=x3+x4
即方程的4个解必然满足x1+x2=x3+x4
而{1、4、16、64}不满足x1+x2=x3+x4
所以{1、4、16、64}不可能是方程的解集