(1)
an+1an+2
anan+1=
1
2(
1
4)n+1
1
2(
1
4)n,∴
an+2
an=
1
4.
又∵a1=
1
2,a1a2=
1
2×
1
4,∴a2=
1
4=
1
2×
1
2,
∴{an}是公比为
1
2的等比数列,
∴an=(
1
2)n.
(2)当n=1时,b1=S1=1,
当n≥2时,bn=Sn-Sn-1=n2-(n-1)2=2n-1.n=1时也成立.
∴bn=2n-1,
∵Tn=
1
2+
3
22+
5
23+…
2n−3
2n−1+
2n−1
2n①
∴[1/2]Tn=
1
22+
3
23+
5
24+…+
2n−3
2n+