(1)、设小球第一次与地面相碰时的速度为V1,对小球使用动能定理,有mgH-KmgH=1/2mV1^2
设小球反弹后的速度为V2,能够反弹的最大高度为h1,据题意知V2=-V1,对小球使用动能定理,有(mg+Kmg)h1=1/2mV2^2
联立以上两式,解得h1=(1-K)H/(1+K)
(2)、小球的重力势能最后全部被摩擦力消耗掉了,设小球从释放开始,直到停止弹跳为止,所通过的总路程为S,根据能量转化与守恒定律,有mgH=KmgS,解得S=H/K
ps:可以介绍(2)的另一种解法.重复(1)的计算过程,可以知道小球第二次反弹的最大高度h2为(1-K)^2H/(1+K)^2,第三次反弹的最大高度h3为(1-K)^3H/(1+K)^3,以此类推,第n次反弹的最大高度hn为(1-K)^nH/(1+K)^n.因为小球每次反弹之后会经过2次h1,h2,h3...hn,所以
小球从释放开始,直到停止弹跳为止,所通过的总路程S=H+2(h1+h2+...hn),其中n要趋于无穷大.易知h1,h2,h3...hn组成首项为a1=(1-K)H/(1+K),公比q=(1-K)/(1+K)的等差数列,且0