已知f(x+y)=f(x)+f(y)+xY(x+y),f’(0)=1.求f(x).

2个回答

  • f(x+y)=f(x)+f(y)+xy(x+y),①

    令x=y=0得f(0)=2f(0),f(0)=0.

    令y=-x,得f(0)=f(x)+f(-x),

    ∴f(x)是奇函数.

    令y=x,得f(2x)=2f(x)+2x^3,

    猜f(x)=ax^3+bx,

    8ax^3+2bx=(2a+2)x^3+2bx,

    比较系数得8a=2a+2,a=1/3,

    f(x)=(1/3)x^3+bx,

    f'(x)=x^2+b,

    f'(0)=b=1.

    ∴f(x)=(1/3)x^3+x.

    检验:f(x+y)=(1/3)(x+y)^3+x+y

    =(1/3)x^3+x+(1/3)y^3+y+xy(x+y)

    =f(x)+f(y)+xy(x+y).

    f1(x)=(1/3)x^3+x.

    下面证明本题仅此一设f(x)=f1(x)+g(x),由①,

    f1(x+y)+g(x+y)=f1(x)+g(x)+f1(y)+g(y)+xy(x+y),

    ∴g(x+y)=g(x)+g(y),

    ∴g(x)=kx(k为常数),f(x)=f1(x)+kx,

    f'(x)=f1'(x)+k,

    令x=0得1=1+k,k=0,

    ∴f(x)=f1(x).