α∈(π/2,π),tanα=-1/3,则sinα=1/√10,cosα=-3/√10
α+β∈(π,2π),cos(α+β)=-12/13,则sin(α+β)=-5/13
cosβ=cos(α+β-α)=cos(α+β)cosα+sin(α+β)sinα=-12/13×(-3/√10)+(-5/13)×1/√10=31/(13√10)
α∈(π/2,π),tanα=-1/3,则sinα=1/√10,cosα=-3/√10
α+β∈(π,2π),cos(α+β)=-12/13,则sin(α+β)=-5/13
cosβ=cos(α+β-α)=cos(α+β)cosα+sin(α+β)sinα=-12/13×(-3/√10)+(-5/13)×1/√10=31/(13√10)