将三角形ABD以AB为轴翻折形成三角形ABP
将三角形ADC以AC为轴翻折形成三角形AMC
所以角PAM=2倍的角BAC=90度
AP=PD=AM,角P=角M=90度
延长MC,PB交于N
则角N=90度
所以APNM为矩形
又因为AM=AP
所以APNM为正方形
设正方形边长(即AD的长)为x
BN=NP-BP=x-2
CN=NM-CM=x-3
BC=BD+CD=5
在直角三角形BCN中,BN^2+CN^2=BC^2
所以有
(x-2)^2+(x-3)^2=25
2x^2-10x+13-25=0
x^2-5x-6=0
(x-6)(x+1)=0
x1=6,x2=-1
因为x大于0
所以x=6
所以AD=x=6