设圆心角为2*θ,
则OC=R*COSθ,CD=R(1-COSθ),AB=2*R*SINθ
S△OAB=0.5*AB*OC=0.5*2*R*SINθ*R*COSθ=0.5*R²*SIN(2*θ)
拱形面积=π*R²*2*θ/(2*π)-S△OAB
=R²*θ-0.5*R²*SIN(2*θ)=0.05
R²*(θ-0.5*SIN(2*θ))=0.05
0.2²*(θ-0.5*SIN(2*θ))=0.05
0.5*2*θ-0.5*SIN(2*θ)=1.25
2*θ-SIN(2*θ)=2.25
求出θ(鬼知道怎求,实在不行试算吧)
,带入CD=R(1-COSθ)