答案:h=2,如图:O为正方形ABCD的中心,连接SO,AC.直线SO即正四棱锥S-ABCD的高h,正方形ABCD的边长设为a,四棱锥S-ABCD设为V,V=h(a)平方/3,在正方形ABCD中,AO=CO=AC/2,AC=a倍根号2,所以AO=CO=AC/2=(a倍根号2)/2,直线SO即正四棱锥S-ABCD的高,SO⊥正方形ABCD,所以SO⊥AC,在RT三角形SOA中,(OA)平方+(SO)平方=(SA)平方,即【(a倍根号2)/2】平方+(h)平方=(2倍根号3)平方,化简得(a)平方+2(h)平方=24.(其中a>0,h>0,且2(h)平方<24即h<2倍根号3),将(a)平方=24-2(h)平方代入V=h(a)平方/3.得V=h【24-2(h)平方/3】=8h-2(h)立方/3.令V=0.使其构成一个方程式f(V)=8h-2(h)立方/3=0,对其求导得f'(V)=8-2(h)平方,令f'(V)=0得h=2.其中0<h<2倍根号3,当0<h≤2时,f'(V)≥0,f(V)为增函数,当2<h<2倍根号3时,f'(V)<0,f(V)为减函数,所以当h=2时,f(V)取最大值,所以答案为h=2.希望我的回答能帮助您!
已知正四棱锥S-ABCD,SA=2倍根号3,则当该棱锥的体积最大时,它的高为多少?
1个回答
相关问题
-
已知正四棱锥的体积为12,底面对角线的长为2根号6,则该正四棱锥的高为
-
若正四棱锥的体积为4,底面边长为2√3,则正四棱锥的高为多少?
-
已知正四棱锥s—ABCD的底面边长为4,求侧棱长和正四棱锥体积
-
正四棱锥S-ABCD内接于一个半径为R的球,那么这个正四棱锥体积的最大值为______.
-
高中数学提问已知正四棱锥的一条斜线长,问但体积最大时,高为多少
-
正四棱锥的侧棱长为2倍根号3,底面边长为2,则体积为多少?
-
已知正三棱锥的侧面积为18√3(18倍根号3),高为3,求体积
-
已知O-ABCD是正四棱锥~已知O-ABCD是正四棱锥,其中OA=根号3,BC=2.以O为球心,1为半径作一个球,则这个
-
正四棱锥侧棱长为2倍跟3,底面边长为2,求该棱锥的体积
-
已知正三棱锥的底面边长为2 ,侧棱长为3分之4倍根号3,则它的体积是多少?