由于是手机回答,符号不太好打,我就说一下~第一个把分子换成x的n次方,下面是x的m次方,第二个是把分母换成sinx的三方,化简后把cosx先算出来为1,后面你就知道了
请教两道高数的题目利用等价无穷小替换求极限(1)lim{sin(x^n)/[(sinx)^m]} X→0 (2) lim
2个回答
相关问题
-
利用等价无穷小替换,求极限!(1)limx-0 sin(x^n)/(sinx)^m(2)limx-0 (tanx-sin
-
高数关于两个重要极限的题目!求这两个极限:lim x-0 sin2x/sin5x lim n-无穷 2^n sinx/2
-
一道利用等价无穷小求极限的题lim[sinx+(x^2)sin(1/x)]/[(1+cosx)ln(1+x)] x趋近于
-
求极限 x趋于0^+ lim sin3x/根号下(1-cosx) 利用等价无穷小的性质 求
-
利用等价无穷小代换的问题lim(x趋向于1)后面是sin(1-x)/ln x 利用等价无穷小求极限,sin(1-x)是连
-
lim((sin(x^n))/((sinx)^m)),x→0,求极限
-
极限运算题lim2^x乘以sin(1/2^X) X趋向于无穷大这道题目答案用了等价无穷小替换,将sin的那个替换成了1/
-
利用无穷小的性质求极限lim(x→+∞)[(n^2+1)/n^3]sin(n!)=
-
高数,求极限无穷小等价替换问题,我的做法是:这里的sin^2x替换成等价的x^2,结果是lim0/x^4,0除以任何数都
-
利用等价无穷小替换,求极限limx→0(tanx-sinx)/x^3 答案是1/2,