几道高一三角函数等式证明如图

2个回答

  • sin3a =sin(2a+a)=sin2acosa+cos2asina=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³a

    cos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-cos²a)cosa=4cos³a-3cosa

    tan3α=sin3α/cos3α

    =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

    =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

    上下同除以cos^3(α),得:

    tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))