答:
f(x)=2^x,g(x)=4^x
g [f(x)]=4^[f(x)]=4^(2^x)=2^(2*2^x)=2^[2^(x+1)]
f [g(x)]=2^[g(x)]=2^(4^x)=2^[2^(2x)]
g [f(x)]>f [g(x)]即是:
2^[2^(x+1)]>2^[2^(2x)]
所以:
2^(x+1)>2^(2x)
所以:x+1>2x
解得:x
答:
f(x)=2^x,g(x)=4^x
g [f(x)]=4^[f(x)]=4^(2^x)=2^(2*2^x)=2^[2^(x+1)]
f [g(x)]=2^[g(x)]=2^(4^x)=2^[2^(2x)]
g [f(x)]>f [g(x)]即是:
2^[2^(x+1)]>2^[2^(2x)]
所以:
2^(x+1)>2^(2x)
所以:x+1>2x
解得:x