∠BOC=90°+1/2∠BAC
∵AD、BE、CF是角平分线
∴∠OBC+∠OCB=1/2(∠ABC+∠ACB)
=1/2(180°-∠BAC)
=90°-1/2∠BAC
∴∠BOC=180°-(90°-1/2∠BAC)=90°+1/2∠BAC