(1)对于命题p:任意x∈R,x 2+1≥a,∵x 2≥0,∴a≤1,即实数a的取值范围是(-∞,1];
(2)当q为真命题时,函数f(x)=x 2-2ax+1在(-∞,-1]上单调递减.
∴a≥-1,
∵p和q均为真命题,∴
a≤1
a≥-1 ,解得-1≤a≤1,
∴实数a的取值范围是[-1,1].
(1)对于命题p:任意x∈R,x 2+1≥a,∵x 2≥0,∴a≤1,即实数a的取值范围是(-∞,1];
(2)当q为真命题时,函数f(x)=x 2-2ax+1在(-∞,-1]上单调递减.
∴a≥-1,
∵p和q均为真命题,∴
a≤1
a≥-1 ,解得-1≤a≤1,
∴实数a的取值范围是[-1,1].