a^t*f(2t)+m*f(t)
= (a^t)*[a^(2t)-1/(a^(2t))] + m*[a^t-1/(a^t)]
=a^(3t) - 1/(a^t) + m*[a^t - 1/(a^t)],let y = a^t,so y at [a,a^2]
上式 = y^3 - 1/y + m*(y - 1/y)
= y^3 +m*y -(m+1)/y = f(y) >=0,
m*(y-1/y) >= 1/y - y^3,
m >= [1/y - y^3]/(y-1/y) = (1-y^4)/(y^2-1) = -(y^2 + 1) >= -(a^2 + 1) ,because of y at [a,a^2]
so m>= -(a^2 + 1),