过点F作FD⊥BO于点D,EW⊥AO于点W,
∵
BE
BF =
1
m (m为大于l的常数),
∴
ME
DF =
1
m ,
∵ME•EW=FN•DF,
∴
ME
DF =
FN
EW =
1
m ,
设E点坐标为:(x,my),则F点坐标为:(mx,y),
∴△CEF的面积为:S 1=
1
2 (mx-x)(my-y)=
1
2 (m-1) 2xy,
∵△OEF的面积为:S 2=S 矩形CNOM-S 1-S △MEO-S △FON
=MC•CN-
1
2 (m-1) 2xy-
1
2 ME•MO-
1
2 FN•NO
=mx•my-
1
2 (m-1) 2xy-
1
2 x•my-
1
2 y•mx
=m 2xy-
1
2 (m-1) 2xy-mxy
=
1
2 (m 2-1)xy
=
1
2 (m+1)(m-1)xy,
∴
S 1
S 2 =
1
2 (m-1) 2 xy
1
2 (m-1)(m+1)xy =
m-1
m+1 .
故答案为:
m-1
m+1 .