复数z=sin(π/6)_icos(π/3)的模是多少啊?
2个回答
|z|=根号[(sinπ/6)^2+(cosπ/3)^2]
=根号(1/4+1/4)=根号2/2
相关问题
sinπ/6+icosπ/6是复数的三角形式吗
cos2π/3(sin3π/5+icos3π/5)的三角式是
复数sin3分之派减icos6分之派的模是
Sin(π+π/6)Sin(2π+π/6)Sin(3π+π/6).Sin(2008π+π/6)
6cos(2kπ+π/3)-2sin(2kπ+π/6)+3tan(2kπ) k€Z
函数y=2sin(2x−π6)的单调递增区间是[kπ-[π/6],kπ+[π/3]],k∈z[kπ-[π/6],kπ+[
复数z=1-cosθ+isinθ(2π<θ<3π)的模为 [ ] A、
已知sin(x+π/6)=0.25,则sin(5π/6-x)+sin(π/3-x)*sin(π/3-x)的值为多少
sin11/π*sin11/3π*sin11/5π分之sin11/10π*sin11/8π*sin11/6π 等于多少
化简 sin(π+α)+sin(2π+α)+sin(3π+α)+……+sin(kπ+α) k属于Z